
N91-21942

Engineering Software Development with HyperCard

Robert J. Darko

Systems Programmer/Analyst

Hudson Products Corporation

A case study describing the successful and unsuccessful techniques

used in the development of software using HyperCard. An

evaluation of the viability of HyperCard for engineering and a

discussion of the future use of HyperCard by this particular group of

developers.

Engineering, Software Develovment with HvoerCard

Abstract:

A case study describing the successful and unsuccessful techniques

used in the development of software using HyperCard. An

evaluation of the viability of HyperCard for engineering and a

discussion of the future use of HyperCard by this particular group of

developers.

Introduction:

A brief description of Hudson Products Corporation is necessary to

keep the rest of this paper in perspective. Hudson Products

Corporation's major products are Air Cooled Heat Exchangers, Steam

Condensers, and Fans. All of these products are designed in-house.

Prior to the use of the Macintosh computer two and a half years ago,

all of these calculations were done using batch software on a mini or

mainframe computer or were done by hand. The majority of the

software that existed was written in FORTRAN.

Much of the software that is used today had their beginnings in the

60's and 70's, and have gone through many transitions. The ideal

solution was to rewrite the software and make it easier to maintain,

but the decision to discontinue the use of the mini and mainframe

computers as soon as possible was a major factor in some of our

development decisions. Our first two concerns were the user

interface and the linking of that interface to a lJarticular software

package.

The User Interface:

HyperCard was chosen as the development environment for the user

interface. The ease and speed in which a particular interface could

be created and altered was HyperCard's strongest point. Having

chosen HyperCard, we set out on a user interface design. This seemed

like an easy task, but it was soon discovered to be more difficult than

had been anticipated. The engineers (as with most users) were set in

their ways and initially were not open to a great deal of change.

For example, the three lines of text in figure 1 are a sample of the
input that the engineers created prior to the use of HyperCard.
Compare this to the screen depicted in figure 2 that is used today.
Both figures reflect the same data.

I BOGUS CHEMICAL CO. H92-260-E
ii 900 !20 4000 0 5

!238 531250 710 3 19903123853

STEAM CONDENSER SUMMER CASE il/12/90nnc

09 361 1 63600380400 300 0 088100 5 0

0 0 1238 531250 7!0 3 19903123853 _0000

Figure 1.

When the development team came up with its initial design they

assumed that the user would be comfortable with the point and click

environment that the Macintosh provided. Feedback from the

existing users showed a great desire to keep hand movement to a

minimum, but the development team wanted to make the interface

easy to use for experienced Macintosh users as well.

File Edit Go Tools Objects Steam Rating

SLeam Rating con,,ers,on
Proposal No.: Hg2-260-E Customer: BOGUS CHEMICRL CO, Date: 11/12/90

It_ No. : $UPII'IER CRSE trng inner '. me

Service : STERII COMOENSER

Hertz. Tubes &

[-] Split Heelers

Altitudt : 120

Drift Cede: 1--11nducod I_Forcocl Heed Code: [] Panel

Rows I &2 Rows 3&4

Effective Bundle Width: 12.3"_ 12.3?5 T_ ofF_:
Tubes/Section : $3 53 (xt/Bare Surf. Ratio :

Tube 0.D. : I. 25 1.25 Tube Pitch:

T_ Vail Th_:kness : .071 .0?1 Fan Ttp SpetM (Ft/Seo) :

SPH: HAPl:

Prolrim Code
Horlz. Tubes & Incl. Tubes &

[] Sln-Throu|k I_ Split Headers

Dosic_Ininlet Aw Temp : 90

inlet Steam Pressure : 4.0 Fc_lin_ Factor : . 0005 Non-Condensublos :

Number of Zones : 9 Number of Sections : 36 Number of' Fans :

Fan Diam_oter : 36 Face Volocit_l : 380 Tube Length : 40
Tube Yali Thermol Cond. : 300 Inlet Stelm Quality : . 88 ! Servk=o Fitter: 5

[] Transition

Rows ! &2

[] 8_._ Screen

EHT-SERI0
L-Base 9
L-Base I 0

[] Inlet Louver ['-1outlet l.o_en Embedded g
!Embedded I0

Figure 2.

[_] Incl. Tubes &
BIo-ThruuBh

Rows3&4

I0

The engineers wanted to use the mouse as little as possible, the

development team wanted to make the data entry as fool-proof as

possible. Consequently the use of pop-up menus was made when

there was a limited choice for input. This required the user to move
from the keyboard, to the mouse and back again. The solution was to
produce some code that allowed the user to "tab into" a menu, or a
"tabbable pop-up menu". An example of this is the scrollable list seen
in figure 2. The bulk of the code that did this was in an XCMD, (an
XCMD is basically a subroutine written in some high-level language
and then physically linked to the HyperCard stack).

The data for this card is entered by using the tab key to go from field
to field and typing in the data and then typing return or tab to go to
the next field. A field is indicated by a label to the left of the field,
the label will contain a colon so as to distinguish it from the data
entered. Some fields, such as the one labeled "Type of Fin" in figure
2, would present a pop-up menu or list. The user could then use the

arrow keys to change the selection and press tab or return to enter

the data, or press the escape key to leave the entry unchanged. The

different groups of buttons on this card represent different flags that

were set in the original input.

The icon labeled "Conversions" is a button that provided a link to

another stack that was developed by one of the engineers. The

"Conversions" stack allowed the engineers to perform unit

conversions to and from a variety of units. A secondary benefit

provided by this stack is that the engineers now all use a common

set of conversion factors.

After getting the feedback about the "Steam Rating" stack we went

on to. develop a stack for another program called "Check Rating".

Figure' "3 shows the card that was created. Again we used the

"tabbable pop-up menu", but also made less use of buttons on this

stack. By using our pop-up menus instead of buttons, most of the

input was kept at the keyboard, where the user wanted it, but the

user still had the ability to use the mouse in the usual way. The

fields that have a pop-up menu have boldfaced labels, figure 3 shows

an example of the menu for "Fin".

The user interface may look like a trivial problem on the surface, but

we found a large portion of our time devoted to issues such as those

mentioned above. HyperCard proved to be flexible enough to allow

us try a variety of solutions to a given user interface problem, and
thus pick a solution that fit our needs the best.

Check Raling c,...._,n,

Proposml No.: Hg2-260-E Customer: BOGUS CHE111CRL CO. Dsto: l l/12/90

item No. : E2 11 - 2 Engineer: 11. [¢. R. B_k No. :

_l_rvic_ : Heeder T_e: Pt.uo H_RO'rR

Total Dutv: ? 169900 Altitude : 110 Desi9 n Air Temperature: 74.32

Hol,cular VeicJht of N_m-Cel_d. : _ Fouling Resistlnce : . 0005

Pro_lrim Code Rohs_ow t, Chat,o Number of'Zones: I Comprtsslbilitv fact_':

Hood Type Tronsi t.ion Drift T_lpe Induced Pitch 3.0 Fil End:_edded 11

H_/drogen Lbs/14r Ncm-Ccmd. 3061112

Tube

o,o. : 1 . s [W,_ll Thi_khecl : . 06S Irhermal Cdmdu©tivit¥ : 2SO

Resistance l_)tipl_er,:, Statlo Press_e l'_ltiolier :
No. of Secttens : 2 (t't'eattve Width : 8.041667 T_lbes/Section : 252

Ne. ef P,IIIleI: 2 No. ef gl,-,rl: 11 Ne. tf _t_l: 2
F_ Dtimet,x" : 12 Face Velocity : 327 S_'flce Rmt_ : 20

SPL : P'w't.:

Eutrudod 8.5

Ext-Ser. 8.5

Extruded I0

Ext-Ser. tO

L-Base 9

L-Base I O

Embedded 9

Embedded 1 0

Figure 3.

Linking the Interlace:

Getting the user interface linked to the code that does all of the real

work was another problem. We had a series of programs that

originally ran in a batch mode that were written in FORTRAN.

HyperCard had no direct way of communicating with this code.

Normally an XCMD would be written to handle a series of calculations

that would be difficult to implement in HyperTalk, but the time

necessary to rewrite the code in C or Pascal was too involved.

We decided to use a third party tool that allowed us to convert

FORTRAN code into an XCMD. This tool involved installing an XCMD

into every stack that needed to access the FORTRAN code. The stack

could then invoke this XCMD and pass information indicating which

FORTRAN routine to run. The XCMD contained a runtime environment

for the FORTRAN which allowed HyperCard to pass information to the

FORTRAN code and the FORTRAN code to pass information back.

This solution worked well at first, but several problems occurred.
The first problem involved the implementation of the third party
tool. It was not always consistent in the way that it located the
FORTRAN subroutine to be run. The initial design required the user
to have a folder that contained the stack and a subsequent folder
that contained the FORTRAN code, as shown in figure 4, but due to
the way that this tool worked the FORTRAN code had to be placed in
the System folder instead.

Hard Disk Rater Software

32 items 145,185K _n disk 5,C)48K 2 items 145,185K in d_lk 5,048K availab

Sgstem Folder Rater Softw_b,'e Hudson Proposals II Proposal WorkFiles

Figure 4.

The second problem with this solution was the time and memory

overhead involved. The FORTRAN runtime package and subroutines

required that at least 1.5 megabytes be allocated to the HyperCard

program. This was acceptable, but not always desirable. The time

overhead involved communication between HyperCard and the

FORTRAN code. The third party XCMD situated itself between

HyperCard and the FORTRAN and caused undesirable speed reduction

in passing parameters back and forth. In fact we discovered that it

was faster to write the parameters out to an external file and read

them back in.

Several tests were conducted to solve each of these individual

problems. The decision to make each piece of FORTRAN code a stand

alone program seemed the best solution. This decision allowed us to

revert to our original design of having the stack and a folder

containing the FORTRAN programs in a directory of their own as

shown in figure 4. This made software updates easier to manage

since the user could copy the contents of one directory to his disk

and not worry about putting different files in different locations.

Our communication mechanism was simple. HyperCard would gather

input from the user, write that data out to a file on disk, and then

invoke the FORTRAN program. The FORTRAN program would read in
the data, calculate the results, and write them out to another file,
which would be read in by HyperCard and then reported to the user.
All of this worked quickly enough to satisfy our users.

Other Concerns:

Another concern after getting the rudimentary portion of our stacks

to work, was the need to store and fetch data between runs. We

needed a database management system, but that area was still being

studied and a complete solution had not been decided on, so a

temporary solution was devised.

The easy solution was to save a copy of each stack after the input

had been made, but there was a lot of overhead in the stacks. In fact

the stacks themselves had been merged into a single stack which

totaled more than 250 Kilobytes. Saving this much information was

going to exhaust our storage rather quickly. The size of the data that

actually needed to be stored was around 5 Kilobytes. So a scheme

was devised that allowed us to store and retrieve the data in a text

file. This technique required that the card design not change

drastically. The most important restriction was that the deletion of

fields or buttons was not allowed. We could add some if needed, but

could not delete them and still be backwards compatible with our

data format.

Using the Hierarchical File System of the Macintosh we achieved a

pseudo-database that allowed our users to fetch related data. This

worked by putting related files into the same folder, (see figure 5 for

an example of this hierarchy). This technique lasted for about a

month" before two other problems became apparent.

The first problem involved the time needed to read and write the

data files. Several solutions were tried, but the only one that

achieved any appreciable time reduction was an XCMD. So we coded

an XCMD to collect the data in memory and then dump it out to the
disk. The drawback to this was that if we ever added new fields or

buttons, then we had to recode the XCMD. This was acceptable.

HPC- Proposals
C90 Proposals

Size Kind

iii!i C90-286 Folder -- t'older

_ C90-298Fold_ -- folderC90-326 Folder -- folder

C_ C90-327 Folder -- folder

Proposals II J

C_ Alpha-123456 Fol_

iiiii C90 Proposals

I"1 C91 Proposals

H88 Proposals 100-299

l'_ H89 Proposals 500-699

:if
|I'-1_ C90-286 Folder _i_1|

3 items 48,899K in disk 25,562K available

13 D P1
42-MXC-O01 (PL) 42-MXC-100 cgo-286.dat_ _---

@
01]c_

Figure 5.

The second problem became two-fold. Users were saving data on

each of their individual systems. This sometimes led to a duplication

of information when more than one engineer worked on the same

problem. The solution here was to modify the stack so that it could

use a file server instead of the user's hard disk. This was

accomplished without a significant amount of effort, but within 3

months we hit another barrier. The number of files created was

getting rather large. Since this was a temporary solution to begin

with, we simply added another level of hierarchy to the storage of

the data.

Printing was a problem that was handled two ways. The first was

for simple output, the solution was an XCMD that printed multi-page

data in a single font. The second was for more complex output. We

needed to create detailed forms and fill in the form with data from

the HyperCard stack. For this we turned to a third party product

called "Reports!" The initial version did the job, but was a bit

difficult to implement, this product has been revised now and is well

worth using.

Future Goals:

We have already started to implement an SQL database that

HyperCard will access. This will allow us to link not only our

engineering data, but our accounting, scheduling, and statistical data
as well. Other plans include on-line help systems for each of the
stacks, simple expert systems, and recoding some of our software
into trae XCMDs.

Evaluation:
HyperCard has its shortcomings, namely speed and lack of color. The
speed issue can usually be worked around by use of a compiler or an
XCMD. Color is a problem that will have to wait until Apple does
something about it. Fortunately our needs do not necessitate the use
of color. Card dimensions had caused us some small problems, but
they too can be worked around.

HyperCard's biggest benefit is its ease of creating a user interface.
Since it is easy to make modifications to the card design many
different solutions to a particular problem can be evaluated. We have
also been able to create a series of tools that all have the same "feel"
to the user. This has helped keep the need for user training down
significantly.

HyperCard has allowed us to accomplish more than we could have
using conventional development methods. It has proven to be an
excellent prototyping tool, and a more than adequate environment
for the implementation of our software. Due to the success with this
project, new projects are being implemented using HyperCard and
the techniques described.

LIFE SCIENCES ON-LINE:

A STUDY IN HYPERMEDIA APPLICATION

Life Sciences Project Division, NASA, Johnson Space Center

Linda A. Christman

Nam V. Hoang

David R. Proctor

